[image: image1.png]
SMBIOS CMOS State Byte Usage Guidelines
Michael E. Brown

David T. Schmidt

Revision 0.2

February 5, 2003

Revision History Table

	Date
	Version No.
	Description of Changes
	Who

	2/5/03
	0.1
	Creation of document
	DTS, MEB

	3/11/03
	0.2
	Edited with comments from AVT
	DTS

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

1.0 Introduction

1.1 Purpose and Scope

This document describes the usage guidelines for the two Bootable CD Data tokens defined in the Dell SMBIOS Implementation document. The SMBIOS table item is ID 0xD4 and the tokens are IDs 0x83 and 0x84. Each token defines a byte of storage in CMOS (hereafter referred to as “storage byte”). This data is used by deployment software to maintain state information across reboots. Users of these tokens include DSA and OM Deployment Toolkit.

2.0 Overview

If multiple software solutions are used during the deployment of a system, data may be left in the storage bytes by one solution and incorrectly interpreted by another. One example is a user who employs Deployment Toolkit to make initial changes to the system and DSA to deploy the OS. Toolkit components allow use of the storage bytes by the user, but the user cannot be forced to clear the bytes when he is finished using them. DSA, therefore, could take an action based on incorrect data in the storage bytes.

To solve this problem, a portion of the second storage byte will be used to specify the last software user of the storage bytes. If the last user is different than the current user, the current user will ignore the data. The current user, however, is free to overwrite this data with its own.

The guidelines described above allow the storage bytes to specify “last man usage”. They are not designed as write protection.

3.0 Guideline Specifications

3.1 Description

Because DSA needs 15 total bits of storage, a variable number of bits in the second storage byte indicate the last user of the byte. The algorithm allows DSA use of 15 bits, while allowing concurrent use by other users, as well as future expansion. The algorithm is determined as follows:

Bit 7 clear: DSA is the last user

Bit 7 set: Use the high niblle (bits 4-7) to determine the last user using table below.

This gives DSA access to storage byte 1 and bits 0-6 of storage byte 2. All other users have access to storage byte 1 and bits 0-3 of storage byte 2.

Storage Byte 2 (Bootable CD Data Byte 2 == Token ID 0x84)

	7
	6…4
	3...0

	0 (DSA)
	Available for storage
	Available for storage

	1
	000 – OM Toolkit

001 – future assignment

010 – future assignment

011 – future assignment

100 – future assignment

101 – future assignment

110 – future assignment

111 – Expand to whole byte
	Available for storage

Note: It is the software’s responsibility to set and interpret user information bits.

3.2 Algorithm for Writing Storage Bytes

A write operation to storage byte 1 or 2 should always be accompanied by setting user information in storage byte 2. If storage byte 2 is not used in your implementation, write ‘0’ to the lower nibble, and the value specified below to the upper nibble. A binary and/or operation on byte 2 can set the appropriate bits. The software should not allow storage information to use any bits required for user info (DSA should allow 15 bits, all others 12). To set the user information, perform the following steps.

	Description
	Algorithm

	The value to be written to storage byte 1 is X. The value to be written to storage byte 2 is Y
	X //If necessary

Y

	Mask the value with the “And” mask from the table
	Y = Y & AND

	Logically OR with the “Or” value from the table
	Y = Y | OR

	Write the storage byte(s) to CMOS.
	Write(X) //if necessary

Write(Y)

3.3 Algorithm for Reading Storage Bytes

A read operation for storage byte 1 or 2 should always involve reading storage byte 2 for user information. To determine user information, the software should perform the following steps.

	Description
	Algorithm

	Read storage byte 1 (X) and storage byte 2 (Y)
	X = Read() //If necessary

Y = Read()

	Mask the byte with the one’s complement of the “And” mask

	If((Y & ~AND) == OR)

 {

 //DATA_VALID

 return (Y & AND),X

 } else {

 //DATA NOT VALID

 return 0,0

 }

	Logically OR with the “Or” value (O) from the table
	

	Compare the value with the “Or” value (z). If they do not match, the software should ignore the data in both storage bytes.

	

	If they match, the software should return the value of storage byte 2 masked with the “And” mask, plus storage byte 1 if required.
	

3.4 Resetting to Factory State

Applications that control the usage of the state bytes should reset the bytes to the factory state (0) before exiting. For example, since DSA knows when it is finished using the state bytes, it can clear them to zero because it will not read them during a subsequent install phase. OM Toolkit, however, is controlled by users who cannot reset the bytes to a factory state, since the tool always sets the Toolkit read bits in storage byte 2.

3.5 AND/OR Values for Software Solutions

	User
	AND Mask
	OR Value

	DSA
	0x7F
	0x00

	OM Toolkit
	0x0F
	0x80

	Future use
	0x0F
	0x90

	Future use
	0x0F
	0xA0

	Future use
	0x0F
	0xB0

	Future use
	0x0F
	0xC0

	Future use
	0x0F
	0xD0

	Future use
	0x0F
	0xE0

	Future use
	0x0F
	0xF0

4.0 Appendices

4.1 References

Dell SMBIOS Implementation
